If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9t2 + 15t + -136 = 0 Reorder the terms: -136 + 15t + 9t2 = 0 Solving -136 + 15t + 9t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -15.11111111 + 1.666666667t + t2 = 0 Move the constant term to the right: Add '15.11111111' to each side of the equation. -15.11111111 + 1.666666667t + 15.11111111 + t2 = 0 + 15.11111111 Reorder the terms: -15.11111111 + 15.11111111 + 1.666666667t + t2 = 0 + 15.11111111 Combine like terms: -15.11111111 + 15.11111111 = 0.00000000 0.00000000 + 1.666666667t + t2 = 0 + 15.11111111 1.666666667t + t2 = 0 + 15.11111111 Combine like terms: 0 + 15.11111111 = 15.11111111 1.666666667t + t2 = 15.11111111 The t term is 1.666666667t. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667t + 0.6944444447 + t2 = 15.11111111 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667t + t2 = 15.11111111 + 0.6944444447 Combine like terms: 15.11111111 + 0.6944444447 = 15.8055555547 0.6944444447 + 1.666666667t + t2 = 15.8055555547 Factor a perfect square on the left side: (t + 0.8333333335)(t + 0.8333333335) = 15.8055555547 Calculate the square root of the right side: 3.975620147 Break this problem into two subproblems by setting (t + 0.8333333335) equal to 3.975620147 and -3.975620147.Subproblem 1
t + 0.8333333335 = 3.975620147 Simplifying t + 0.8333333335 = 3.975620147 Reorder the terms: 0.8333333335 + t = 3.975620147 Solving 0.8333333335 + t = 3.975620147 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + t = 3.975620147 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + t = 3.975620147 + -0.8333333335 t = 3.975620147 + -0.8333333335 Combine like terms: 3.975620147 + -0.8333333335 = 3.1422868135 t = 3.1422868135 Simplifying t = 3.1422868135Subproblem 2
t + 0.8333333335 = -3.975620147 Simplifying t + 0.8333333335 = -3.975620147 Reorder the terms: 0.8333333335 + t = -3.975620147 Solving 0.8333333335 + t = -3.975620147 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + t = -3.975620147 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + t = -3.975620147 + -0.8333333335 t = -3.975620147 + -0.8333333335 Combine like terms: -3.975620147 + -0.8333333335 = -4.8089534805 t = -4.8089534805 Simplifying t = -4.8089534805Solution
The solution to the problem is based on the solutions from the subproblems. t = {3.1422868135, -4.8089534805}
| b^3=200 | | 8x+5+45+90=180 | | 6y-3(y-3)+3=0 | | 6p-(8p+19)=2-(10p-4) | | 75+(4x+9)=180 | | 2x-15+9=x+2 | | b=95+(25+7)w | | (4x+9)=24 | | -5(n-1)-3n=0 | | 5x=-3+2x+11 | | 39=2x+15x-80 | | 2x-1+7=9x-1 | | 2x+30=x+17+14 | | -5(7n-5)+4n=0 | | Logs=-3 | | (11*x)+x=156 | | x-1=x-2+21 | | Y=70 | | 8(x+5)=57 | | -10x+5x^2= | | Y/12=x | | 8n-3(5n-5)=11-3n | | s/8=9 | | (7-10)=z/-5 | | x+19=x+20+19 | | 5×U-3=3/4 | | 70+50+2y+20=180 | | 3x/7=11 | | 3a-3=27 | | 7+5(2c-1)=0 | | 2x+23+7=x+20 | | 70+5x+2y+20=180 |